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Abstract. The sharing and collective processing of information by individuals 
in any social system is an attempt to reduce the uncertainty associated with key 
features of their environments by collecting and storing information. By      
sampling each of its options regularly, an individual gains from being able to       
exploit them when they are productive and avoid them otherwise. In this way, 
collection of information can be thought of as a solution to the uncertainty      
problem that maximises potential opportunities [3], [4]. Some group-living spe-
cies have evolved effective social mechanisms for reducing uncertainties in 
their environments. However, doing so may entail certain costs with respect to 
attributes such as time, energy and attention. In this paper, we explore the 
cost/benefits of cooperation within the domain of distributed systems, where 
biologically inspired agents interact with each other using the environment to 
disseminate information about resources (foraging sites). In the sections that 
follow, we describe briefly the theory of cooperation, social foraging theory, 
the simulation model and some experiments to understand/analyse the dynam-
ics of social foraging in stochastic environments. 

1   Introduction: Social Foraging and Cooperation 

To account for the manifest existence of cooperation and related group behaviour, 
such as Altruism and Restraint in competition, evolutionary theory has acquired two 
kinds of extension: Genetic kinship theory and reciprocity theory. If the agents are 
sufficiently closely related, altruism can benefit reproduction of the set, despite loses 
to the individual altruist. The evolution of the suicidal barbed sting of the honeybee 
worker could be taken as a paradigm for this line of theory [12]. 
 

Many of the benefits sought by living things are disproportionally available to      
cooperating populations. The problem lies with the fact that while an individual can 
benefit from mutual cooperation, each can also do so even better by exploiting the 
cooperative efforts of others. Over a period of time, the same individuals may interact 
again, allowing for more complex patterns of strategic interactions. [10] Argues that 
there are at least three ways that cooperation can evolve among unrelated individuals: 
reciprocity, group selection, and by-product mutualism. Though, kin selection is a 
fourth candidate. 

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 99-108



As well as the existence of group, team and partitioned tasks in complex societies, 
another facet of higher-level functionality is a shift from individual to social/group 
foraging strategies. [18] identified six foraging strategies in ant colonies: (1) ‘individ-
ual foraging’ foraging without cooperation and communication with others; (2) ‘tan-
dem running’ a scout guides one recruit to the food source with or without trail lay-
ing; (3) ‘group mass recruitment’ the scout guides a group of recruits to the source, 
usually laying a trail to the nest; (4) ‘mass recruitment’ the scout lays a trail while 
returning to the nest which guides recruits to the food source; (5) ‘trunk trail’ semi-
permanent trails guide foragers to long-lasting food sources; and (6) ‘group hunting’ 
a group leaves the nest and forages collectively in a swarm along a well-defined trail 
system. These strategies also appear to be correlated with a decrease in the autonomy 
of the individual foragers themselves [19]. That is, there is a shift from information 
processing by individuals to emergent properties of a set of essentially probabilisti-
cally behaving individuals mediated through signals, i.e. a set of trail pheromones. 
For instance, in an individual foraging strategy the worker must rely on its own in-
formation, navigating back to the nest using the sun or other landmarks (e.g. the de-
sert ant Cataglyphis bicolor).  

 
In tandem running, a successful returning forager can recruit just one individual 

and passes on information of where the food source is by physically leading the re-
cruit to the source (e.g. Leptothorax). However, with more complex strategies trail 
pheromones can pass the information not just to one other recruit but to many. There 
is no need for an individual to be able to navigate back to the nest using the sun or a 
prominent rock but can simply orient (‘smell’) their way along a chemical trail (e.g. 
Atta). Despite the apparent simplicity of this task, foragers experience a constant 
probability per unit distance of losing the trail. Seemingly counterintuitive, this ap-
parently errant behaviour has been shown to be very adaptive at the group-level [20, 
21]. Once lost, these workers become scouts who can search for new sites. However, 
it appears that the error rate is sufficiently tuned so that enough foragers do not lose 
the trail and thus can exploit the source whilst enough become scouts enabling a con-
stant supply of new sources. (Parallel behaviour is known in honeybee foraging in 
which the directional information in waggle dances is imprecise) [22]. It seems that 
the complexity emerges at the level of the trail network (or group), which can adap-
tively adjust to fluctuating food dispersion or density. Thus, the foragers are a ‘group-
level adaptive unit’ [5, 23], and also see [24]. 

2   Then again, how advantageous cooperation really is? 

The acquisition and use of socially acquired information is commonly assumed to be 
profitable. But, there could be scenarios where the use of such information either 
provides no benefit or can actually incur a cost. It is suggested [2] that the level of 
incompatibility between the acquisition of personal and socially acquired information 
will directly affect the extent of profitability of the information, when these two 
sources of information cannot be acquired simultaneously, because of cognitive or 
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physical constraints. Also, a solitary individual’s behavioural decisions will be based 
on cues revealed by its own interactions with the environment.  
 

However, in many cases, for social animals the only socially acquired information 
available is the behavioural actions of others that expose their decisions, rather than 
the cues on which the decision was based. In such a situation it is thought that the use 
of socially acquired information can lead to information cascades that sometimes 
result in sub-optimal behaviour.  

 
In our experiments, we look for results that suggest the presence of information 

cascades in the context of information sharing in distributed systems. Designing 
agents that rely both on individual foraging and shared information, or agents that just 
rely on shared information. Ongoing studies are focused on understanding whether 
this might happen in a highly dynamic environment; where there are constant changes 
in the flow of information about resources that undergo frequent updates. 

2.1   Cost of cooperative efficacy 

In any social group, individuals possess various behaviours that define the assortment 
of the interactions at all sorts of levels, individual, groups, cliques, teams etc. The 
social foraging theory suggests that, the functional consequence of an individual’s 
foraging behaviour depends on both the individual’s own actions and the behaviour 
of other foragers. There may be conflicts of interest between signallers and receivers. 
Where such a conflict exists, the receiver’s need to acquire information may favour 
sensitivity to the cues provided by the behaviour and appearance of the signaller. In 
turn, this sensitivity may give rise to opportunities for manipulation and exploitation 
by the signaller.  
 

It is understood that exploitative strategies are unlikely to persist in the long run, 
because they generate selection for a change in receiver responses. However, it is 
argued, that the evolution of exploitation may prove a recurrent, though, transient 
phenomenon. There are costs associated with broadcasting information publicly, as 
exemplified by the production of “food vocalisations” in many social animals. The 
issues that come under this context are, dangers of predation, and mass recruitment to 
a very less profitable resource may lead to starvation. This is equivalent to the “Slash 
Dot” effect that the Internet sometimes experiences.  

 
Other costs within the context of a social system are cost of misinformation (ly-

ing), cost of accessing/using the resources and cost of signalling/cooperation. We use    
foraging games to analyse the economics of Kleptoparasitic1 behaviour, to predict the 
ecological circumstances under which the behaviour is maintained. Other costs are 
expressed as survival rate; if an agent keeps failing/delaying to locate resources for 

                                                           
1 Kleptoparasitism refers to all forms of exploitation of others’ food discoveries or captures. It 

constitutes the information-sharing models in the Social Foraging Theory paradigm. 
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the requested processes/services it gets penalised and if this increases above a thresh-
old, then the agent dies and a new agent replaces the old agent. 

3   Model Overview 

We implement a discrete-event simulation of cooperative (collaborative) agents, 
which share information (through the environment, Stigmergy2) about the location of                
resources. A process generator (P) generates processes/requests/tasks with Poisson 
distribution. Processes enter the system queue at the start of the simulation, where 
they wait to be allocated to agents (which are initialised randomly). An agent gets 
allocated a process/task. Individual processes/tasks require a certain number of re-
sources/services (r

N

1, r2...rn) that it requires for the successful completion/execution of 
the process. 

 
The resource generator (ℜ ) generates a random number of resources for the suc-

cessful execution/completion of a request. When an agent encounters some informa-
tion about a resource/service, it probabilistically stores the information in its resource 
vector and/or publishes the information onto a “HotSpot”, if it decides to share it with 
others. 
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Fig. 1. Schematic representation of the information dissemination system.   

 
If the agent encounters a resource it is searching for, it locks the resource, provided 

it’s available at the time and marks the resource entry in the target vector (which 
contains the list of processes waiting to be finished and the status of the resources) 
under the specific process. Once all the required resources/services have been located, 
the process is executed. The agent can only lock the resource for a fixed time after 
                                                           
2 The term “Stigmergy” was first introduced by Pierre Paul Grassé, a French entomologist, in 

1959. He used the term to describe the coordination of activities of ants in carrying out com-
plex activities, such as nest building or foraging, without direct communication amongst 
themselves. It is evident that stigmergy describes a form of asynchronous interaction and in-
formation interchange between entities mediated by an “active” environment. 
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which it will have to rejoin the queue. The agent incurs a cost once it has locked a 
resource. A resource diminishes by a certain value while the process/task is being 
executed. The jth process assigned to the ith agent is pij, and costs it . Individual 

resource cost is , for the resource r

ijC
nr

ijC n. Cumulative cost associated with jth process 

is, 
 

1

n
N

r
ij ij

n
C C

=

= ∑  
(1) 

  
Agents can cooperate and form groups to collaboratively execute the process/task 

or choose to forage alone. The throughput of the system is calculated as a function of 
successfully completed jobs in the minimum time and with minimal costs. Agents 
probabilistically (ρ) cooperate with other agents, and decide to share information 
through the HotSpot or not. If the agent incurs a cost which is higher than the cost on 
its previous task , it then either chooses to collaborate with other agent(s) 

by forming a group and/or change its degree of cooperation. This acts as a simple 
adaptive learning mechanism and some form of reciprocity. An agent’s cooperative 
strategy (probability of publishing/sharing information) changes after every process 
or during successive simulation runs. This is more or less an equivalent NASH equi-
librium

1ij ijC C
+
>

3 for the agent. 
 
We have considered the resource handling time as negligible and the process      

execution time as a random time factor. Other agents looking for the same resource 
can access the HotSpot and search through the advertised resources/services. The 
HotSpot contains the information about resources and their location. Each resource 
published at the HotSpot has a reinforcement value (similar to pheromone deposit) 
associated with it, which signifies the demand (∆) of the resource.  

 
Every time an agent accesses resource information at the HotSpot, it reinforces the 

pheromone deposit so that the resource path continues to exist, whereas if the rein-
forcement value goes below a certain value, it gets over written by the first new re-
source that appears in the system. Hence, the table is constantly updated with the 
latest information about resource paths. Agents attempt to optimise costs locally and 
globally in accordance with the dynamics of their interactions. 

                                                           
3 Nash Equilibrium is a combination of strategies for the players of a game, such that each 

player’s strategy is a best response to the other players’ strategies. A best response is a   
strategy, which maximises a player’s expected payoff against a fixed combination of     
strategies played by the others. 
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3.1   Results and Analysis 

We analyse some aspects of artificial and biological social systems, such as, optimal 
number of agents in the system [11], throughput of the system, degree of cooperation 
(which can depend on an implicit factor of relatedness). Demonstration of the use of 
Nash equilibrium, to show the “tragedy of the commons” for certain situations both in 
the simulations and in real life, e.g. Slash Dot effect. How a certain resource gets over 
exploited because of it being over publicised and may lead to its exhaus-
tion/starvation. Similarities with Caraco’s food calling game [1], [15], when agents 
individually look for resources and on finding it, decide to publish it or not. Accord-
ing to Caraco’s model if they decide against publishing the information, then they are 
more susceptible to predation. 

3.1.1 Optimal Group Size? 
 
In general, we observe a peaked fitness function [6] when we analyse the system as a 
collection of agents trying to maximise the throughput and minimise the delay in 
acquiring information. The peaked function we see in Fig. 2 illustrates the existence 
of only one optimal agent population size for which, the throughput of the system is 
maximum, given that certain other parameters in the simulation remain fixed, like the 
number of resources.  

 
This suggests that initially an increase in the agent population is beneficial in obtain-
ing a good throughput, but the throughput peaks at some point for a certain size of 
population implying that there are enough agents to process requests for resources 
any further increase will result in delays due to queuing for resources. The Increasing 
Fitness plot is an indication of abundance of resources.  
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Fig. 2. Optimal Number of Agents. 
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3.1.2 Throughput of the System 
 
The time taken to find all the resources for a request can vary depending on the     
number of resources required. Therefore, we calculated the average time (τavg) taken 
for finding the various resources over a series of runs and accumulated the data for all 
the possible number of resources in the system. We were interested in finding out the 
trend that follows in terms of time/hops taken to locate all those resources. As seen 
from Fig. 3(a) out that there is an increasing trend with respect to the number of hops. 
As the number of required resources increases it takes more time to find them, but the 
trend shows that there could be a decrease later on in the system as the agents develop 
an optimum response for each request, as the number of resources increase. This also 
may lead to a drop in the number of cooperators, meaning that individual foraging 
can sometimes also be a useful strategy Fig. 3(b). Fig. 3(c) shows the average cost 
incurred by agents over successive simulation runs. The drop in average cost suggests 
an increase in information sharing and level of cooperation. 
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Fig. 3. (a) Time (τavg) to establish a resource path. (b) Number of Cooperators. (c) Average 
cost  over successive runs. avg
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3.1.3 Slash dot effect/Kleptoparasitic Behaviour 
 
Slash dot effect, whereby popular data becomes less accessible because of the load of 
the requests on a central server. The following Fig. 4 demonstrates the percentage 
increase in the number of agents in the queue for a resource e.g. resource r12 in this 
figure. The figure also displays the corresponding decline in the throughput for     
processes requiring the service r12. 

 
This implies that popular request for a service can lead to it being highly adver-

tised or “vocalised”, resulting in the depletion and decreased performance of the ser-
vice. Therefore, unless there is a way to adapt to this phenomenon, the services will 
continue to fail or perform at a sub-optimal behaviour. Current work is aimed at 
studying the possibility of introducing service replication in the locality of the current 
service. This will distribute the load of the service and help process more requests. 
Also, it will handle to a certain extent the dynamic nature of the system wherein the 
services can fail.  
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Fig. 4. Demonstration of Slash dot effect at a resource r12 and the corresponding drop in 
throughput for processes requiring that resource.  

Kleptoparasitic behaviour [14] is observed when an agent frequently refers to the        
environment for information regarding resources instead of foraging itself. Also, 
there isn’t a change observed in its cooperative strategy, if anything, there is evidence 
of decreasing cooperation. Implying that the agent is satisfied getting most of its 
information from other agents that have published/shared the information and itself 
does not gather information. 

3.1.4 Vocalisation/Persistence of Resources: 
 
There are various resources that appear and disappear in the system over the duration 
of the simulation. The requests and usage of resources helps reinforce their life in the 
simulation. The Fig. 5 below shows a graph indicating the appearance and persistence 
of resources during one run of the simulation.  
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Fig. 5. Vocalisation/Persistence of resources.  

After the emergence of a resource, its life depends upon the reinforcement or fail-
ure. The figure gives an indication of the existence and use of resources at particular 
times, and helps hypothesize the prospects of their consumption, which is very help-
ful in evaluating the various strategies being used for sharing information. The           
perseverance of some particular strategies in the system gives an indication of the 
behaviour of agents to particular situations and also, determines if certain behaviours 
recur in agents over time, but without them having the benefit of hindsight. 

4   Discussion/Conclusions 

Our experiments explore various cooperative/competitive strategies that encompass 
most aspects of social behaviour. Mixed strategy models [8], [9] showing the       
possibility of freeloaders or lying. Ongoing implementations include scenarios like 
modelling trust in the system, altruism, and misinformation/malicious agents. To 
show how information sharing models can make novel, quantitative, and testable 
predictions concerning social foraging theory, within the application domain of dis-
tributed systems e.g. P2P networks.  
 

The experiments reveal some interesting dynamics of the system with respect to 
the information dissemination algorithm. Our main objective has been to keep the 
agent imperceptible and its behaviour very simple, and to understand the local dy-
namics of interacting agents that lead to complex global behaviours. We draw our 
inspiration for this work from biological social networks, e.g. Ant colonies, Bee colo-
nies, and other relevant theories in behavioural ecology. We are currently developing 
formalisations for the current algorithmic approach, so as to do a detailed mathemati-
cal analysis of the underlying theory. Our study hopefully gives insights into certain 
kinds of behaviour persistent in the system, which bear some resemblance to biologi-
cal social systems. Especially to areas such as foraging, danger of predation, sharing 
information regarding food/nest sites etc, [17], [5], and [16]. Issue of trust and reputa-
tion once incorporated into the simulation should yield some more interesting dynam-
ics. The simulation model discussed should eventually be able to help understand 
some of the contexts in which cooperation emerges, is beneficial or not, and to what 
extent.  
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